

 Navigation

 	
 index

 	
 next |

 	latimes-table-stacker 0.3 documentation

latimes-table-stacker

Publish spreadsheets as interactive tables. And do it on deadline.

Features

	Convert a CSV file into an interactive HTML table that sorts, filters and paginates.

	Quickly create as static files to serve on the web.

	Sync static files with Amazon S3 [http://en.wikipedia.org/wiki/Amazon_S3] for instant publishing.

	Syndicate data as CSV, XLS and JSON.

	Post an RSS feed and sitemap that promote the latest data.

In the wild

	White-label deployment [http://table-stacker.s3-website-us-west-1.amazonaws.com/]

	Everything at spreadsheets.latimes.com [http://spreadsheets.latimes.com/]

	Numerous tables published by the Orlando Sentinel [http://www.orlandosentinel.com/features/education/os-gfx-per-pupil-spending-database-20120111,0,769147.htmlstory]

	Census data [http://www.starledger.com/str/indexpage/project/2010-Census-populations-by-town.htm] from The New Jersey Star Ledger

	Campaign contributions [http://www.minnpost.com/severnsguntzel/mnbachmanncontributorsq3/] at MinnPost.com

	Super PAC contributions [http://californiawatch.org/data/see-whos-donating-super-pacs] from California Watch

Documentation

	Getting started
	Requirements

	01. Install the code on your computer

	02. Build the example tables

	03. Launch the static version of the site

	04. Check it out

	05. Deploy your app

	06. Publish you own data table

	Configuration
	Example

	Metadata Options

	Column Options

	Override sort with URL

	Management commands

	Customization
	Global settings

	Credits

Contributing

	Code repository: https://github.com/datadesk/latimes-table-stacker

	Issues: https://github.com/datadesk/latimes-table-stacker/issues

 Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	latimes-table-stacker 0.3 documentation

Getting started

This tutorial will walk you through the process of installing Table Stacker and publishing an example.

Requirements

	git [http://git-scm.com/]

	python [http://www.python.org/]

01. Install the code on your computer

It’s not required, but I recommend creating a virtual environment to store your application. I like to do this with the Python module virtualenv [http://pypi.python.org/pypi/virtualenv], which creates a walled-off garden for the Python code to work without distraction from the outside world. If you don’t have it, you’ll need to install it now, which just might be as easy as

$ pip install virtualenv
Or maybe ...
$ sudo easy_install install virtualenv
Or, if you're in Ubuntu ...
$ sudo apt-get install python-virtualenv

Once you have virtualenv installed, make it happen by navigating to wherever you keep your code and firing off the following. I’m going to call this project my-table-stacker, but you should substitute whatever you’re calling your version.

$ virtualenv --no-site-packages my-table-stacker

Now jump into the directory it creates.

$ cd my-table-stacker

Activate the private environment with virtualenv’s custom command.

$. bin/activate

Download the latest version of the code repository into a directory called project.

$ git clone git://github.com/datadesk/latimes-table-stacker.git project

And jump in and get ready to work.

$ cd project

Install our app’s Python dependencies.

$ pip install -r requirements.txt

Create the project’s database

$ python manage.py syncdb
$ python manage.py migrate

02. Build the example tables

You’ll learn how to layout your own data later, but for now we’ll work with the example files. Jump back to your first terminal shell and drop the following line, which instructs our build management command to bake out a static site using the instructions in settings.py and the table recipes in the yaml directory.

$ python manage.py build

03. Launch the static version of the site

You’ll want to run this step in a new terminal shell. So open up a new window or tab, navigate to the project directory and fire off the following. It is a Django management command that will start a test version of the site on your machine, tailored to serve the static files we used created.

$ python manage.py buildserver

04. Check it out

If everything clicked, you should see your demo site up and running with all the example tables at http://localhost:8000.

05. Deploy your app

The static files we’ve created in your build directory could probably be served from most common web servers. So, if you’ve already
got yours worked out, you can just stop here and deploy that folder where you like.

However, the app is prepared to help you easily deploy to Amazon S3 [http://en.wikipedia.org/wiki/Amazon_S3]. To make that happen, you’ll need to do a little set up. First, go to aws.amazon.com/s3 [http://aws.amazon.com/s3] and set up an account. Then you’ll need to create a bucket for storing our files. If you need help there are some basic instructions here [http://docs.amazonwebservices.com/AmazonS3/latest/gsg/].

Next configure the bucket to act as a website. Amazon’s official instructions say to do the following:

In the bucket Properties pane, click the Website configuration tab.

Select the Enabled check box.

In the Index Document Suffix text box, add the required index document name (index.html).

Before you leave that pane, note the URL at the bottom. This is where your site will be published.

Now, set your bucket name in the settings.py file.:

AWS_BUCKET_NAME = 'table-stacker'

Next, install s3cmd [http://s3tools.org/s3cmd], a utility we’ll use to move files back and forth between your desktop and S3. In Ubuntu, that’s as simple as:

$ sudo apt-get install s3cmd

If you’re Mac or Windows, you’ll need to download the file [http://s3tools.org/download] and follow the installation instructions you find there.

Once it’s installed, we need to configure s3cmd with your Amazon login credentials. Go to Amazon’s security credentials [http://aws-portal.amazon.com/gp/aws/developer/account/index.html?action=access-key] page and get your access key and secret access key. Then, from your terminal, run

$ s3cmd --configure

Finally, now that everything is set up, publishing your files to s3 is as simple as:

$ python manage.py publish

Once you do that, your site should appear at the the link provided in your AWS console. If you want to bind that to a subdomain of your site, say, www.tablestacker.com, you need to create a new CNAME record in your domain’s DNS registration. You also need the name of your bucket to line up with the subdomain. Don’t take it from me. Read the detailed instructions provided by Amazon.

For example, if you have registered domain, www.example-bucket.com, you
could create a bucket www.example-bucket.com, and add a DNS CNAME entry
pointing to www.example-bucket.com.s3-website-<region>.amazonaws.com.
All requests to http://www.example-bucket.com will be routed to
www.example-bucket.com.s3-website-<region>.amazonaws.com.

More documentation on that is available here [http://docs.amazonwebservices.com/AmazonS3/latest/dev/index.html?WebsiteHosting.html].

06. Publish you own data table

Before you can publish your own data table, you’ll need to learn about our YAML-based configuration system. But don’t worry, it’s not that hard. You can read about it in the configuration section or school yourself by mimicking the examples files in the project’s yaml subdirectory folder. Then, doing the following:

$ python manage.py build
$ python manage.py publish

 Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	latimes-table-stacker 0.3 documentation

Configuration

Each published table is drawn from a CSV file you provide and styled according to the rules outlined in a configuration file written in YAML [http://en.wikipedia.org/wiki/YAML] configuration file. CSV files are stored in the csv folder in the root directory. YAML configuration files are stored in the yaml folder, with one configuration per file.

Example

Here is an example YAML configuration that specifies how to layout this demonstration table [http://table-stacker.appspot.com/major-us-coal-mines-2009/].

table:
 title: Major U.S. coal mines, 2009
 file: major-us-coal-mines-2009.csv
 slug: major-us-coal-mines-2009
 byline: Ben Welsh
 description: <p>A list of the largest coal-producing U.S. mines for the year 2009. The U.S. Energy Information Administration reports the production of all mines that produce more than 4 million short tons. In 2009, 47 mines qualified by the list. All together, major mines produced more than 650 million short tons of coal, a majority of the roughly 1 billion total short tons unearthed across the nation. Wyoming mines dominate the list, filling out the first nine positions.</p>
 column_options:
 columns:
 - Mine
 - Company
 - Type
 - State
 - Production (Short tons)
 style:
 Mine: 'text-align:left; width:250px;'
 Company: 'text-align:left; width:250px;'
 Type: "width:80px;"
 State: "width:100px;"
 sorted_by:
 - Production (Short tons): descending
 formatting:
 Production (Short tons):
 method: intcomma
 is_published: true
 publication_date: 2011-01-12
 sources: U.S. Energy Information Administration
 credits: Ben Welsh

Metadata Options

The following YAML configuration options detail how to present a number of attributes about the table. All entries should be placed inside a dictionary titled table.

	
title

	The headline that will appear in lists and at the top of the table’s detail page. Required.

title: Major U.S. coal mines, 2009

	
file

	The name of the CSV file the table will be based on. It should be in the csv directory with a header row included. Required.

file: major-us-coal-mines-2009.csv

	
slug

	A string that serves as the unique identifier of the table in the database and doubles as the relative url of its web page. It cannot be used for more than one table in your database. It’s recommended that you do not use spaces or strange characters. Required.

file: major-us-coal-mines-2009

	
byline

	The name or list of names that will appear as a byline in lists and on the table’s detail page. Optional.

byline: Bob Woodard and Carl Bernstein

	
description

	A block of text describing the table that will appear above the table on its detail page. HTML can and should be included. Optional.

description: <p>A list of the largest coal-producing U.S. mines for the year 2009.</p>

	
kicker

	A brief string to run above the headline in all capital letters. “SPREADSHEET” by default. Optional.

kicker: data table

	
legend

	A slot above the table where you can stick an HTML block containing a legend. Empty be default. Optional.

legend: ""

	
footer

	A slot below the table where you can stick and HTML block containing footnotes, corrections or other extra information. Optional.

footer: "<p>We regret the error.</p>"

	
is_published

	A boolean true or false that indicates whether the table should be published. If set to false, the table will be loaded in the database but will not appear on the site. Required.

is_published: true

	
publication_date

	The date that will appear alongside with the byline. Should be provided in YYYY-MM-DD format. Required.

publication_date: 2011-01-12

	
publication_time

	The time that will appear alongside the date with the byline. Should be provided in HH:MM:SS format. Optional.

publication_time: "11:58:00"

	
sources

	A block of text describing where the data came from. Will appear at the bottom of the table detail page after the phrase Sources:. HTML can and should be included. Optional.

sources: U.S. Energy Information Administration

	
credits

	A block of text listing all the people who helped make the page. Will appear at the bottom of the table detail page after the phrase Credits:. HTML can and should be included. Optional.

credits: Russ Stanton
Or ...
credits: Bob Woodward and Carl Bernstein

	
per_page

	How many records should appear in each page of the data table. 50 by default. Optional.

per_page: 50

	
show_download_links

	Whether download links for CSV, XLS and JSON data should be made available on the table detail page. The default is true, so you only need to include it when you want to turn downloads off.

show_download_links: false

	
show_search_field

	Whether or not to show a search box on the table detail page that filters the table. The default is true, so you only need to include it when you want to turn the search off.

show_search_field: false

	
show_in_feeds

	Whether the table will show in the sitemap, RSS feeds and public-facing list pages. The default is true, so you only need to include it when you want to set it to false.

show_in_feeds: false

Column Options

The following YAML configuration options specify how to present the columns in the data table. They should appear as entries in a dictionary titled column_options.

	
columns

	A list of the columns from the CSV that should appear in the published table. They will appear in the order specified here. Key names should correspond to headers in the CSV file. Optional.

columns:
 - Mine
 - Company
 - Type
 - State
 - Production (Short tons)

	
style

	A dictionary that specifies custom CSS to be applied to columns in the data table. CSS declarations should be included just as they would in an HTML style attribute. Key names should correspond to headers in the CSV file. Optional.

style:
 Mine: 'text-align:left; width:250px;'
 Company: 'text-align:left; width:250px;'
 Type: "width:80px;"
 State: "width:100px;"

	
sorted_by

	A single item list that specifies which column that table should be sorted by default, and which directions. Key names should correspond to headers in the CSV file. The direction can be either ascending or descending. Optional.

sorted_by:
 - Production (Short tons): descending

	
sorters

	A dictionary that specifies how to properly sort columns in the interactive table. The JavaScript library that crafts the table attempts to guess the proper sorting method for each column, but sometimes it is wrong. Other times you might not want to sort a column at all, which can be done by setting the value to false. You can use these options to declare what you’d like it do. A full list of the available sorters can be found here [https://github.com/datadesk/latimes-table-stacker/blob/master/table_stacker/static/js/jquery.tablesorter.js#L696]. Optional.

sorters:
 Production (Short tons): fancyNumber
 Name: false

	
formatting

	A dictionary that specifies formatting methods to be applied to all rows in a particular column. Each entry should include the column’s name,
followed by a dictionary requesting a particular method and, if necessary, customization options and other columns to be passed in as arguments. Optional.

formatting:
 Employees Affected:
 method: intcomma
 Company Name:
 method: title
 Title:
 method: link
 argument: url

If you’d like to add a new filter of your own, open the table_fu/formatting.py file and add it there. Formatting filters are simple functions that accept a value and return the transformed value we’d like to present.

def title(value):
 """
 Converts a string into titlecase.

 Lifted from Django.
 """
 value = value.lower()
 t = re.sub("([a-z])'([A-Z])", lambda m: m.group(0).lower(), value.title())
 return re.sub("\d([A-Z])", lambda m: m.group(0).lower(), t)

After you’ve written a new filter, add it to the DEFAULT_FORMATTERS dictionary in that same file and you should now be available for use in YAML configuration files.

Available formatting filters

	
ap_state(value)

	Converts a state’s name, FIPS code or postal abbreviation to A.P. style. Returns the submitted string if a conversion cannot be made.

formatting:
 ColumnName:
 method: ap_state

	
bubble(value, yes_icon="/static/img/bubble_yes.png", no_icon="/static/img/bubble_no.png", empty="—")

	Returns one of two “Consumer Reports” style bubbles that indicate yes (a filled bubble) or no (an empty bubble). The first letter of each type is what should be provided (i.e. Y, N). If a match cannot be made the empty argument is returned.

formatting:
 ColumnName:
 method: bubble

You can customize the output by overriding the defaults

formatting:
 ColumnName:
 method: bubble
 options:
 yes_icon: "http://example.com/yes.png"
 no_icon: "http://example.com/no.png"

	
capfirst(value)

	Changes a string so that only the first character is capitalized.

formatting:
 ColumnName:
 method: capfirst

	
checkbox(value, yes_icon='/static/img/checkbox_yes.png', no_icon='/static/img/checkbox_no.png')

	Returns one of two checkbox images that indicate yes (a checked box) or no (an empty box). The first letter of each type is what should be provided (i.e. Y, N). If a match cannot be made an empty string is returned.

formatting:
 ColumnName:
 method: checkbox

You can customize the output by overriding the defaults

formatting:
 ColumnName:
 method: checkbox
 options:
 yes_icon: ""
 no_icon: ""

	
date_and_time(value, formatting="N j, Y, h:i a")

	Reformats a date string in a humanized format, AP style by default.

formatting:
 ColumnName:
 method: date_and_time

You can override the output format by specifying an alternative in the formatting in the options. You must use Django’s datetime formatting style [https://docs.djangoproject.com/en/dev/ref/templates/builtins/?from=olddocs#date].

formatting:
 ColumnName:
 method: date_and_time
 options:
 formatting: "Y-m-d P"

	
dollar_signs(value)

	Converts an integer into the corresponding number of dollar sign symbols (ie. 3 -> “$$$”). Meant to emulate the illustration of price range on Yelp. If something besides an integer is submitted, “N/A” is returned.

formatting:
 ColumnName:
 method: dollar_signs

	
dollars(value, decimal_places=2)

	Converts an number to a string containing commas every three digits with a dollar sign at the front. Returns “N/A” if the something besides a number if submitted.

formatting:
 ColumnName:
 method: dollars

The number of decimal places the number is rounded at can controlled with an option. The default is two decimal places.

formatting:
 ColumnName:
 method: dollars
 options:
 decimal_places: 0

	
intcomma(value)

	Converts an integer to a string containing commas every three digits.

formatting:
 ColumnName:
 method: intcomma

	
image(value, width='', height='')

	Accepts a URL and returns an HTML image tag ready to be displayed.

formatting:
 ColumnName:
 method: image

Optionally, you can set the height and width with keyword arguments.

formatting:
 ColumnName:
 method: image
 options:
 height: "30px"
 width: "30px"

	
link(title, url)

	Wraps a string in an HTML hyperlink. The URL from another column passed as an argument.

formatting:
 TextColumnName:
 method: link
 arguments:
 - LinkColumnName

	
percentage(value, decimal_places=1, multiply=True)

	Converts a floating point value into a percentage value. An empty string is returned if the input triggers an exception.

formatting:
 ColumnName:
 method: percentage

The number of decimal places set by the decimal_places option. The default is one. Also by default the number is multiplied by 100. You can prevent it from doing that by setting the multiply option to False.

formatting:
 ColumnName:
 method: percentage
 options:
 decimal_places: 0
 multiply: false

	
percent_change(value, decimal_places=1, multiply=True)

	Converts a float into a percentage value with a + or - on the front and a percentage sign on the back. “N/A” is returned if the input cannot be converted to a float.

formatting:
 ColumnName:
 method: percent_change

The number of decimal places set by the decimal_places option. The default is one. Also by default the number is multiplied by 100. You can prevent it from doing that by setting the multiply option to False.

formatting:
 ColumnName:
 method: percent_change
 options:
 decimal_places: 0
 multiply: false

	
short_ap_date(value, date_format=None)

	Reformats a date string in an abbreviated AP format.

formatting:
 ColumnName:
 method: short_ap_date

The method tries to parse the datestring automatically, but in some cases (i.e. dates in the first century) or less common date formats
you might need to specifiy the date format using strptime standards [http://docs.python.org/library/datetime.html#strftime-strptime-behavior].

formatting:
 ColumnName:
 method: short_ap_date
 options:
 date_format: "%Y-%m-%d"

	
simple_bullet_graph(actual, target, width='95%', max=None)

	Renders a simple bullet graph [http://en.wikipedia.org/wiki/Bullet_graph] that compares a target line against an actual value. Unlike a conventional bullet graph, it does not shade the background into groups. Instead, it’s all one solid color.

formatting:
 ActualValueColumn:
 method: simple_bullet_graph
 arguments:
 - TargetValueColumn
 options:
 max: 60

	
title(value)

	Converts a string into titlecase.

formatting:
 ColumnName:
 method: title

	
tribubble(value, yes_icon='/static/img/tribubble_yes.png', partly_icon='/static/img/tribubble_partly.png', no_icon="/static/img/tribubble_no.png", empty="—")

	Returns one of three “Consumer Reports” style bubbles that indicate yes (filled bubble), partly (half-filled bubble), no (empty bubble). The first letter of each type is what should be provided (i.e. Y, N, P). If a match cannot be made the empty argument is returned.

formatting:
 ColumnName:
 method: tribubble

You can customize the output by overriding the defaults

formatting:
 ColumnName:
 method: tribubble
 options:
 yes_icon: "http://example.com/yes.png"
 no_icon: "http://example.com/no.png"
 partly_icon: "http://example.com/partly.png"

	
vote(value, yes_vote='/static/img/thumb_up.png', no_vote='/static/img/thumb_down.png', did_not_vote="<b style='font-size:130%;'>—")

	Returns one of three icons representing the outcome a vote: Yes (thumbs up); No (thumbs down); Did not vote (Bolded emdash). The first letter of each type is what should be provided, i.e. Y, N, anything else.

formatting:
 ColumnName:
 method: vote

You can customize the output by overriding the defaults

formatting:
 ColumnName:
 method: vote
 options:
 yes_vote: ""
 no_vote: ""
 did_not_vote: ""

Override sort with URL

You can override the default sorting order of a table by appending a query string argument that provides an alternative. There are two required parameters.

	
sortColumn

	The index of the column that the table should sort by. Starts with zero from the left. So to sort by the first column, you would provide 0.

	
sortOrder

	The direction the column should sort in. 0 will sort in the ascending. 1 will sort in the descending.

Here is an example of resorting a table by the first column in ascending order.

http://table-stacker.s3-website-us-west-1.amazonaws.com/california-layoffs-december-2010/?sortColumn=0&sortOrder=0

 Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	latimes-table-stacker 0.3 documentation

Management commands

Interactions with the Table Stacker database are handled using custom Django management commands [http://docs.djangoproject.com/en/dev/ref/django-admin/] that allow you to create, update and delete tables.

Like other Django commands, they are run by interacting with the manage.py file in your project’s root directory.

	
build [options]

	Builds a static site with all the tables okayed for publication

$ python manage.py build

	
buildserver [options]

	Delete the table outlined in the configuration file provided by the first argument.

$ python manage.py buildserver
Optionally, set the port for the server.
$ python manage.py buildserver 8080

	
publish [options]

	Sync the build directory with the Amazon S3 bucket specified in settings.py

$ python manage.py publish

	
unbuild [options]

	Empties the build directory

$ python manage.py unbuild

	
unpublish [options]

	Empties the Amazon S3 bucket defined in settings.py

$ python manage.py unpublish

 Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	latimes-table-stacker 0.3 documentation

Customization

Table Stacker is published with minimal styling [http://table-stacker.appspot.com/]. If you want to adapt it for your site, you’ll probably want to change the appearance and layout. The CSS styles that regulate the appearance of Table Stacker are stored in the /static/css directory. Change them and you’ll change the appearance of the site. Table Stacker’s layout is managed using Django’s templating system [http://docs.djangoproject.com/en/dev/ref/templates/] and configured through a series of files in the templates directory. Change them and you’ll change the layout of the site.

Global settings

	
SITE_NAME

	A settings.py configuration that sets the site’s name in meta data around the site, like the title tag and Facebook open graph tags.

	
FACEBOOK_ADMINS

	A list of Facebook user ids included in the open graph tags in each page’s head. Useful for configuring the site’s footprint on Facebook. Set in settings.py.

 Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	latimes-table-stacker 0.3 documentation

Credits

This project would not be possible without the generous work of people like:

	ProPublica’s News Application Desk [http://www.propublica.org/nerds], and particularly Jeff Larson [https://github.com/thejefflarson], who developed the Ruby libraries table-fu [https://github.com/propublica/table-fu] and table-setter [https://github.com/propublica/table-setter].

	Chris Amico [https://github.com/eyeseast], who did the noble work of porting table-fu to Python [https://github.com/eyeseast/python-tablefu].

	Christian Bach, the man who gave us tablesorter [http://tablesorter.com/docs/].

	Thomas Suh Lauder, who has suggested many style improvements and formatting options.

 Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	latimes-table-stacker 0.3 documentation

Index

 A
 | B
 | C
 | D
 | F
 | I
 | K
 | L
 | P
 | S
 | T
 | V

A

 	

 	ap_state()

B

 	

 	bubble()

 	

 	byline

C

 	

 	capfirst()

 	checkbox()

 	

 	columns

 	credits

D

 	

 	date_and_time()

 	description

 	

 	dollar_signs()

 	dollars()

F

 	

 	FACEBOOK_ADMINS

 	file

 	

 	footer

 	formatting

I

 	

 	image()

 	intcomma()

 	

 	is_published

K

 	

 	kicker

L

 	

 	legend

 	

 	link()

P

 	

 	per_page

 	percent_change()

 	percentage()

 	

 	publication_date

 	publication_time

S

 	

 	short_ap_date()

 	show_download_links

 	show_in_feeds

 	show_search_field

 	simple_bullet_graph()

 	SITE_NAME

 	slug

 	

 	sortColumn

 	sorted_by

 	sorters

 	sortOrder

 	sources

 	style

T

 	

 	title

 	title()

 	

 	tribubble()

V

 	

 	vote()

 Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.2.2.

 _static/up-pressed.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/minus.png

_static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		latimes-table-stacker 0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Los Angeles Times Data Desk.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

